Fermentation of soybean hulls to ethanol while preserving protein value

Jonathan R. Mielenz,a,b,*, John S. Bardsley,a,c, Charles E. Wyman,a,d

a Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
b BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
c Mascoma Corporation, Lebanon, NH 03766, United States
d Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92507, United States

Abstract

Soybean hulls were evaluated as a resource for production of ethanol by the simultaneous saccharification and fermentation (SSF) process, and no pretreatment of the hulls was found to be needed to realize high ethanol yields with Saccharomyces cerevisiae D3A. The impact of cellulase, β-glucosidase and pectinase dosages were determined at a 15% biomass loading, and ethanol concentrations of 25–30 g/L were routinely obtained, while under these conditions corn stover, wheat straw, and switchgrass produced 3–4 times lower ethanol yields. Removal of carbohydrates also concentrated the hull protein to over 25% w/w from the original roughly 10%. Analysis of the soybean hulls before and after fermentation showed similar amino acid profiles including an increase in the essential amino acids lysine and threonine in the residues. Thus, eliminating pretreatment should assure that the protein in the hulls is preserved, and conversion of the carbohydrates to ethanol with high yields produces a more concentrated and valuable co-product in addition to ethanol. The resulting upgraded feed product from soybean hulls would likely to be acceptable to monogastric as well as bovine livestock.

© 2009 Published by Elsevier Ltd.

1. Introduction

Agricultural residues such as corn stover and wheat straw are important starting materials (feedstocks) for development of a cellulosic biomass ethanol industry because they are inexpensive sources of complex carbohydrates that can be used to produce ethanol. To obtain high bioconversion levels of ethanol from these biomass sources requires a thermochemical process, called pretreatment, prior to enzymatic hydrolysis of complex carbohydrates to simpler sugars that can be fermented to ethanol (Mielenz, 2001). Numerous pretreatment processes have been evaluated that range from use of just hot water and steam to addition of alkali, solvents, and dilute acid (Hsu, 1996; Wyman et al., 2005; Mosier et al., 2005). For example, dilute sulfuric acid pretreatment successfully hydrolyzes much of the hemicellulose to monomeric sugars and short chained sugar oligomers (Lee et al., 1999). After pretreatment, neutralization, and conditioning, fermentation can be initiated by addition of cellulase and β-glucosidase enzymes plus a fermentation microorganism in a process called simultaneous saccharification and fermentation (SSF) (Gaus et al., 1976; Philippidis et al., 1993; Olofsson et al., 2008). Typically commercial enzymes are used to complete the depolymerization process to simple sugars which are fermented to ethanol by microorganisms such as Saccharomyces cerevisiae, Escherichia coli, Zymomonas mobilis, or Klebsiella oxytoca, some of which have been genetically engineered to convert all or most of the sugars to ethanol (Karhumaa et al., 2006; Sedlak and Ho, 2004; Kuyper et al., 2005; Asghari et al., 1996; Mohagheghi et al., 2004; Doran et al., 1994). Ethanol is purified by removal from the solids left after fermentation by distillation/dehydration of the fermentation broth or beer.

Soybean hulls (SBH) are an agricultural residue produced during processing of soybeans. The hard shell or hull of the soybean is removed mechanically and accounts for about 5–8% of the ~95 million tons (~3.2 × 10^9 bushels) per year soybean crop in the United States (USDA 2006: www.nass.usda.gov). Considered a waste product from the production of soy oil, soybean meal, and other high-protein products, soybean hulls are typically sold as is or as compressed pellets and fed to cows (Blasi et al., 2000). Conversion of the carbohydrates in soybean hulls to ethanol could result in significant quantities of ethanol. However since there is a viable valuable market for soybean hulls as animal feed, little attention to ethanol production has resulted. Recently Candida guilliermondii was used to produce ethanol or xylitol from an acid hydrolysate of soybean hulls (Schirmer-michel et al., 2008). Similarly, Corredor et al. (2008) studied dilute acid and modified steam-explosion pretreatments of soybean hulls, but did not produce ethanol. Alternately, we report here an evaluation of soybean hulls as a
possible fermentation feedstock for production of ethanol in a high-density SSF process, in the absence of any thermochemical pretreatment, thus producing ethanol while permitting preservation of the soybean hull protein.

2. Methods

2.1. Organisms and enzymes

S. cerevisiae D3A was provided by the National Renewable Energy Laboratory (NREL) and is available from ATCC as No. 200062, as was *Z. mobilis* 8b (Mohagheghi et al., 2004) through a materials transfer agreement from NREL to Dartmouth College. *E. coli* K011 ATCC 55,124 (Asghari et al., 1996) was obtained from the American Type Culture Collection, Manassas, VA. Enzymes used were cellulase Spezyme CP® (Genencor-Danisco, Beloit, WI) at 23 or 59 filter paper units (FPU)/mL, depending upon the lot; β-glucosidase (Sigma–Aldrich Corp., St. Louis, MO, Novozyme 188®; C6105) at 340 U/mL; pectinase (Sigma–Aldrich Corp., St. Louis, MO, P2611) at 28,482 U/mL, and hemicellulase (Sigma–Aldrich Corp., St. Louis, MO, H2125) at 0.3–3 U/mg. Enzyme units are defined by the manufacturer, which include filter paper units for cellulases (Zhang et al., 2006). Enzymes are added as units per gram soybean hulls (SBH) cellulose on a dry basis (DB).

2.2. Small scale fermentations

Soybean hulls were obtained in pellet form from Ag Processing Inc.; Hastings NE. Biomass samples (wheat straw, corn stover, and switchgrass) were obtained from Richard Hess at the Idaho National Laboratory, Idaho Falls, ID. Hull pellets and biomass samples were ground in a Wiley mill through a 1 mm screen prior to fermentation. Fermentations containing approximately 5–20% DB by weight SBH were conducted in sealed 70 mL reusable BBL Septi-Chek bottles using 3 g SBH per bottle in 20 mL unless noted otherwise. *S. cerevisiae* D3A was grown in YEPD medium (Difco, Detroit, MI), and *E. coli* K011 and *Z. mobilis* 8b were grown in Luria broth to stationary phase to provide fermentation inoculum at 1.5% v/v. The medium for the *S. cerevisiae* fermentation contained SBH, enzymes, yeast cells, and water to reach the biomass loading target. The limited number of *E. coli* K011 fermentations contained a final concentration of: 100 mM NaCl, 1 mM MgCl2 · H2O, and 1 mM CaCl2 · 2H2O at pH 7, with no added nitrogen. *Z. mobilis* fermentations contained 1 mM MgCl2 · H2O, 1 mM CaCl2 · 2H2O, and 10 mM NaHPO4 at pH 7 with no added nitrogen. For typical fermentations all components except enzymes and cells were added to the vials and autoclaved for 30 min. and cooled. The cells, sterile water and enzymes were added, and the vials were sealed without flushing with nitrogen. Bottles were weighed to the nearest 10 mg as tare, after components were added, after autoclaving, and throughout the fermentations. No samples were taken during the fermentations. Fermentations were conducted with shaking @ 36 °C using a New Brunswick C24 shaker (New Brunswick Instrument Company, New Brunswick, NJ) at 150 rpm. Bottles were vented with a sterile needle to release CO2 prior to weighing on days 1, 2, 3, 6, 9, and 13. Fermentations contained 50 μg/mL streptomycin to minimize mesophilic anaerobe contamination during the research. Larger-scale *S. cerevisiae* fermentations were also conducted in a 2 L Ehrenmeyer flask at 36 °C with an agitation speed of 150 rpm using unmill SBH pellets at 15% DB loading (w/w) with a total weight of 1200 g. After autoclaving and cooling, cells, water, streptomycin, and enzymes were added, and the flasks were degassed with ultra-pure nitrogen prior to incubation. At the end of the fermentation, final weights were recorded, and samples were taken and frozen at −70 °C for later analysis. All tests were conducted with technical duplicate replicates.

2.3. Analysis

Fermentation performance was determined by HPLC as described in a Sorvall Biofuge microcentrifuge at 13,000 rpm for 2 min, and the supernatant filtered through a 0.45 μm filter to remove solids. A high performance liquid chromatography system (HPLC) equipped with a refractive index (RI) detector (Waters Model 2695, Milford, MA, at Dartmouth College, or Hitachi Model 2490, Pleasanton, CA, at ORNL, was used for both sugar and ethanol analysis. For analysis of fermentation products such as ethanol and acetic acid, a Biorad Aminex HPX-87H 300 × 7.8 mm column was used. Residual sugars in the solid residues were assayed per the NREL “Enzymatic Saccharification of Lignocellulosic Biomass” method (Ehrman, 1994, www.nrel.gov/biomass/analytical_procedures.html), and the resulting sugars analyzed by HPLC using a Biorad Aminex HPX-87P 300 × 7.8 mm. Protein analysis from bottle fermentations were determined by combustion of dry samples with a ThermoFinnigan FlashEA 1112 N/Protein Analyzer (CE Elantech, Lakewood, NJ). A similar procedure was used to determine protein content by Rock River Laboratory, Watertown, WI using a Carlo Erba nitrogen analyzer, and in all cases protein levels were calculated as 6.25 times the sample nitrogen content (Delorme et al., 1981). Amino acid analysis was conducted by Eurofins Central Analytical Laboratory, Metairie LA by acid hydrolysis and HPLC analysis using method AOAC 994.12.

3. Results

3.1. Soybean hull ethanol fermentation

Soybean hulls contain significant levels of carbohydrate that could be hydrolyzed and converted into ethanol. However, the carbohydrate types and distribution are somewhat unique compared to carbohydrates from other non-food plant sources, called lignocellulosic biomass, as shown in Table 1. Unlike other plant materials, soybean hulls typically have approximately 9–14% protein, with significant amounts of pectin and low amounts of lignin (Strombaugh et al., 2000; Smith and Greenfield, 1979; Lee et al., 2007; Mullin and Weili, 2001; Ipharraguerre and Clark, 2003; Corredor et al., 2008).

Initial tests with the soybean hulls were conducted to determine their potential for ethanol production with limited pretreatment to minimize inhibitor formation. In small-scale tests, the soybean hulls received either no treatment, 60 min. autoclaving, or 60 min. autoclaving with 1% sulfuric acid. The samples were adjusted to pH 5 prior to SSF fermentation at 16.6% (w/w) solids loading with 47.3 FPU Spezyme CP®/g SBH cellulose, 100 FPU β-glucosidase/g SBH cellulose, and *S. cerevisiae* D3A. Ethanol concentrations after six days were similar for all conditions: 30.8 g/L for no autoclaving or acid use, 30.1 g/L for autoclave without acid use, and yielded 28.7 g/L for autoclave with acid. Residual glucan concentrations in the solids for these conditions were 1.8%, 1.1%, and 2.1%, respectively, compared to the initial glucan levels of 35% by weight, in part due to the high level of enzymes used. The ethanol yields and residual glucose indicated that dilute acid pretreatment may not be needed for SSF production of ethanol by *S. cerevisiae*.

3.2. Enzymes required during ethanol fermentation

To confirm that enzymes alone were sufficient to permit effective SSF conversion of soybean hulls to ethanol, levels of the primary source of cellulase, Spezyme CP®, were varied for SSF of soybean hulls without any acid treatment at a 15% biomass loading
Table 1
Composition of soybean hulls and selected herbaceous biomass. Data as percent of biomass on a dry basis from Strombaugh et al. (2000), Smith and Greenfield (1979), Lee et al. (2007), Mullin and WeiLi (2001), Ipharraguerre and Clark (2003), Corredor et al. (2008). Measured values for SBH are in [X]. nd = not determined. SBH contained 4.3% galactan.

<table>
<thead>
<tr>
<th></th>
<th>Cellulose</th>
<th>Hemicellulose</th>
<th>Lignin</th>
<th>Pectin</th>
<th>Protein</th>
<th>Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean hulls</td>
<td>29–51 (38.4)</td>
<td>10–20 (10.2)</td>
<td>1–4 (2.8)</td>
<td>6–15 (nd)</td>
<td>9–14 (10.7)</td>
<td>1–4 (5.8)</td>
</tr>
<tr>
<td>Corn stover</td>
<td>31–41</td>
<td>20–34</td>
<td>16–23</td>
<td>0</td>
<td>4–9</td>
<td>4–8</td>
</tr>
<tr>
<td>Switchgrass</td>
<td>31–45</td>
<td>22–35</td>
<td>18–22</td>
<td>0</td>
<td>2–4</td>
<td>4–9</td>
</tr>
<tr>
<td>Wheat straw</td>
<td>32–49</td>
<td>23–39</td>
<td>5–19</td>
<td>0</td>
<td>2–6</td>
<td>1–10</td>
</tr>
</tbody>
</table>

at 2.9, 5.8, 11.6, and 23.2 FPU/g cellulose SBH for 13 days. The second critical enzyme, β-glucosidase, was held constant at 41 U/g SBH cellulose at the 15% biomass loading. Fig. 1 shows the rate of weight loss during fermentation improved until the bottles with 11.6 and 23.2 FPU Spezyme CP/g cellulose proceeded in similar manner. Ethanol concentrations at the end of the fermentation were similar to weight loss with Spezyme CP dosages of 2.9, 5.8, 11.6, and 23.2 FPU/g cellulose producing 29.0 ± 0.01, 30.1 ± 0.6, 31.9 ± 1.4, 30.3 ± 1.1 g/L ethanol. A new Genencor/Danisco cellulase Accellerase 1000® was tested and also found to be effective for SSF ethanol production from SBH (data not shown).

The impact of varying β-glucosidase supplementation on ethanol yields was determined with fixed Spezyme CP® dosages of 11.6 FPU/g cellulose along with evaluation of no enzyme and single enzyme use, as shown in Fig. 2. β-glucosidase loadings of 13, 27, and 82 U β-glucosidase/g cellulose resulted in ethanol production of 31.2 ± 0.3, 32.1 ± 0.3, 31.9 ± 0.3 g/L ethanol respectively. However, Spezyme CP® alone resulted in a slow weight loss that ceased at a lower level than with added β-glucosidase of 27.4 ± 3.4 g/L ethanol, while fermentations with β-glucosidase alone at 82 U/g produced 2.5 ± 0.02 g/L ethanol. Without S. cerevisiae cells, no ethanol was produced and virtually no weight change was observed (0.01 g loss). Fig. 2 shows that the β-glucosidase loadings used were sufficient at all three levels tested.

3.3. Other biomass feedstock for ethanol

To confirm that soybean hulls are unique in not requiring pretreatment for high yield ethanol production, corn stover, wheat straw, and switchgrass were subjected to the same fermentation process without any prior pretreatment besides autoclaving. In two experiments, these milled feedstocks were prepared in bottles with a biomass loading of 15% (g/g), and S. cerevisiae DsA was used as the fermentation ethanologen at two different enzyme dosages, one being the level selected above. It was not know if the enzyme dosages determined for SBH were sufficient for these other feedstocks, so in a second experiment the enzyme levels were increased to 11 or 22.3 FPU Spezyme CP®/g cellulose and 13 or 39 U/g cellulose β-glucosidase, respectively, in separate experiments. Fig. 3 shows enzyme dosages, weight loss, and final ethanol concentration comparisons for these four biomass sources during SSF incubations. SSF of non-pretreated SBH yielded 29.1 ± 0.8 g/L ethanol for both enzyme dosages, while other non-pretreated corn stover, switchgrass and wheat straw reproducibly resulted in much lower-ethanol levels regardless of the enzyme dosage: 11.3 ± 0.3, 8.3 ± 0.2, and 7.4 ± 0.2 g/L ethanol, combined for both conditions, for corn stover, switchgrass and wheat straw, respectively. The fermentations were highly reproducible at these conditions, and soybean hulls yielded between 2.6- and 4-fold more ethanol concentrations than the other biomass sources tested.

3.4. Biomass loading tests

Industrial operations typically apply high biomass loadings of 15% (w/w) or higher to increase the titer of ethanol while minimizing the fermentor volume required in spite of materials handling difficulties. Therefore, tests were conducted to determine the impact of varying the biomass loading from 5% to 20% DB of SSF...
processing of soybean hulls. Fig. 4 shows the weight loss for SSF with 5%, 10%, 15%, and 20% DB soybean hull loadings using identical enzyme dosages of 11 FPU Spezyme CP/g cellulose and 13.0 U b-glucosidase/g cellulose in a fixed volume of 20 mL. Fermentation results yielded 8.0 ± 0.1, 16.9 ± 0.1, 25.2 ± 0.04, and 32.5 ± 0.3 g/L ethanol for the 5%, 10%, 15%, and 20% w/w loadings, respectively, reflecting ethanol concentrations were essentially proportional to the biomass loading. To examine if the lower biomass loadings fermented more rapidly, 5%, 10%, 15% and 20% DB soybean hull loadings reached 90% conversion levels in 5, 5.2, 5.2 and 5.3 days, respectively, suggesting limited retardation in conversion by higher solids concentrations.

3.5. Bacterial ethanol fermentation

Three different ethanologens (Zymomonas, E. coli and Saccharomyces) were used in SBH fermentations to verify that the ease of fermentation of SBH was not specific to Saccharomyces. Also, individual bottles were used for each time-point to evaluate the use of weight to estimate progress in the ethanol fermentation. Thirty-six identical vials were prepared containing approximately one gram SBH at about 8.4% (g/g) biomass loading, as described in the methods section, with differences only in added salts, enzymes, and inoculum. Twelve vials were charged with S. cerevisiae D3A, and 12 with E. coli KO11 or Z. mobilis 8b, both bacteria buffered to pH 7. Enzymes were loaded at 5.1 FPU Spezyme CP/g cellulose, 15.5 U b-glucosidase/g cellulose, and 13.8 U hemicellulase/g cellulose for all vials. In addition, 500 U pectinase/g cellulose was used with S. cerevisiae (Spezyme CP dosages are different than that determined above as these tests preceded the dosage determination). Hemicellulase was used for this test because E. coli KO11 and Z. mobilis 8b are genetically engineered to ferment xylose derived from hemicellulase activity to ethanol. Two bottles were removed randomly from each set of 12 bottles at various times, vented, weighed, and frozen at −80 °C. For analysis, the samples were thawed and assayed for ethanol production.

The results of the weight loss versus time for each ethanologen are shown in Fig. 5a while Fig. 5b shows the ethanol yield from all three microorganisms. Fig. 6 shows the proportionality of ethanol concentration and weight loss for the data in Fig. 5a and b. Analysis of the samples by HPLC showed a significant reduction in residual soluble materials detectable with a RI detector for E. coli KO11 compared to the other ethanologens (data not shown), presumably due to the greater capability of E. coli KO11 for fermenting multiple sugars. No additional experiments were conducted with either genetically engineered E. coli or Zymomonas.

3.6. Impact of pectinase on SSF conversion of SBH

Soybean hulls contain 6–15% pectin as part of its structure (Table 1) so tests were conducted to determine the impact of addition of pectinase at three levels of 2850, 7120, and 14,240 U pectinase per gram cellulose in combination with set levels of 11 FPU/g cellulose Spezyme CP and 13 U/g cellulose b-glucosidase. Control SSF conversions had either no pectinase or only the highest level of pectinase with neither cellulase nor b-glucosidase. All levels of pectinase increased the rate of fermentation, as evidenced by the weight loss shown in Fig. 7. The lowest and middle pectinase additions did not impact ethanol concentrations, with 30.2 ± 0.01, and 30.2 ± 0.001 g/L ethanol produced, respectively, but the highest pectinase level produced a lower-ethanol level of 29.2 ± 0.7 g/L. However, all were higher than for the control of 28.6 ± 0.2 g/L ethanol. Other experiments not shown showed that the pectinase enzyme preparation was highly inhibitory to bacterial fermentations and may also impact yeast fermentations. Addition of pectinase by itself at the highest level produced 11.1 ± 0.3 g/L ethanol.

3.7. Large scale fermentation tests

To more fully optimize the fermentation and provide sufficient material for further analysis, large batch flask fermentations were conducted in duplicate with 180 g DB SBH at 15% biomass loading in 1200 g SSF conversion. Flask fermentations were chosen because the low fluidity of SBH at a 15% loading prevented agitation in a conventional fermentor during the first 48 h. Enzyme loadings of
11.5 FPU Spezyme CP, 13 U β-glucosidase, and 2850 U pectinase were used per g cellulose with *S. cerevisiae* D5A. After thirteen days, duplicate fermentations produced 31.9 ± 0.15 (flask A) and 31.2 ± 0.3 (flask B) g/L ethanol. The enzymatic saccharification assay determined that fermentation flask A had 5.3% ± 0.01% residual glucose and flask B had 6.7% ± 1.2% residual glucose compared to starting SBH of 34.9% ± 0.7% glucose. Based on this, the degree of conversion of cellulose was calculated to be 84.9% of theoretical for flask A and 80.9% for flask B, indicating extensive hydrolysis and fermentation of the cellulose in the SBH substrate.

3.8. Fate of protein during fermentation

Soybean hulls contain 9–14% protein, and by eliminating the pretreatment process, any protein in the fermentation residues may be minimally impacted by *S. cerevisiae* D5A in the SSF process. To examine this, the level of protein remaining in fermentation solid residues was determined. Examination of the residues from the larger-scale fermentation determined that flask A contained 25.6% ± 0.15% protein, while flask B had 27.1% ± 0.39% compared to the starting SBH feedstock which containing 10.7% protein, yielding about a 2.5× increase in protein content in the fermentation residue on a dry basis. The highest concentrations were recorded to be 30.5% ± 0.6% protein for biomass loading experiments with a 5% biomass loading test (Fig. 4). Protein concentrations in the fermentation residue of eight duplicate samples
were compared to ethanol concentrations relative to the starting SBH substrate, and the data shown in Fig. 8 is consistent the protein concentration increasing as the ethanol concentration increases. These data were obtained by combustion and analysis of nitrogen content with protein levels obtained using the 6.25 N to protein factor (Delorme et al., 1981). The fermentation residues were also assayed for amino acid content, with Fig. 9 showing the concentration of fourteen amino acids determined for the starting SBH and compared to each of the larger-scale fermentations, A and B. The data is presented as percent by weight with the difference between SBH and the fermentation residues representing the concentrating effect detected by nitrogen combustion analysis shown previously. The data in this Fig. demonstrates a 2.2-fold increase in concentration of the amino acids for the average of fermentation samples A and B, suggesting little if any loss of amino acids.

4. Discussion

Soybean hulls contain a unique mixture of carbohydrates, significant levels of protein, and only a little lignin (Mullin and Weili, 2001) compared to other typical plant or biomass materials. While soybean hull's susceptibility to enzymes had been shown previously in a biodegradability study (Enayati and Parulekar, 1995), the use of soybean hulls for fermentation and ethanol or chemical production has received little attention, in part due to the existing market for the hulls as bovine feed. Recently Schirmer-Michel demonstrated fermentation of a soybean hull hydrolysate after detoxifications to produce almost 6 g/L ethanol or xylitol with C. guilliermondi yeast (Schirmer-Michel et al., 2008). Similarly, Corredor recently demonstrated a high degree of enzymatic hydrolysis of soybean hulls by dilute acid and modified steam-explosion pretreatment liberating up to 72% of available hexose sugars in soybean hulls (Corredor et al., 2008) and proposed the resulting hydrolysate would be suitable for ethanol fermentation. By contrast, as shown here, soybean hulls are unique among various agricultural residues in that they do not require the extensive/expensive thermochemical pretreatment described in these publications to make polymeric carbohydrates accessible to cellulase and other enzymes that depolymerize their complex carbohydrates to fermentable sugars. Only cellulases and β-glucosidase were required for significant depolymerization of the complex carbohydrates to permit S. cerevisiae D3A to ferment ethanol in the SSF-mode with enzyme dosages at less that fifteen Spezyme CP® and β-glucosidase enzyme units per gram cellulose in SBH. The difference in susceptibility of soybean hulls compared to two agricultural residues, corn stover and wheat straw, and a dedicated biomass source, switchgrass, verifies the lack of a need for pretreatment to obtain high ethanol concentrations for the SBH used. Furthermore, ethanol concentrations from SBH are 3–4-fold higher than from these other biomass sources, even with increased enzyme dosages. Addition of pectinase is beneficial due to the high levels of pectin in the hulls, especially for accelerating the depolymerization/fermentation process making the cellulose more accessible, although the benefit is indirect since S. cerevisiae D3A cannot metabolize pectin enzyme hydrolysis products (J. Doran-Peterson, personal communication). While 15% biomass loadings were routinely used, tests with thick biomass concentrations of 20% as well as 5% and 10% loading demonstrated SSF could produce essentially proportional ethanol concentrations over the whole range of feedstock levels, permitting significant flexibility in fermentation. However, biomass loadings above 15% suffer from mixing difficulties initially but change in the subsequent 24–48 h due to thinning of the solids by cellulase action. Thus, use of fed batch or continuous systems could overcome the solids loading limitations.

Successful fermentation of SBH to ethanol was not restricted to S. cerevisiae as two genetically engineered bacteria were also effective in fermenting SBH to ethanol. In fact, E. coli KO11 produced the highest concentration of ethanol in part because it can utilize xylose, pectin, and uronic acid (Doran et al., 2000). Under the conditions tested, the benefits of genetic modification of Z. mobilis 8b (Mohagheghi et al., 2004), which can ferment pentose sugars to ethanol, were not evident as it produced the lowest concentration of ethanol. The non-xylose utilizing S. cerevisiae produced more ethanol than Zymomonas, but conditions were not optimized for each microorganism, which included a higher initial pH for Zymomonas than used at NREL (Mohagheghi et al., 2004), so better performance is possible. Further work was not undertaken with either bacterial ethanologen since they currently are not accepted in animal feed, an important goal of this work. It is interesting to note that both weight loss data (Fig. 5a) and fermentation results (Fig. 5b) showed that vial weight loss is effective for tracking
ethanol yields, especially at high biomass loadings, avoiding disrupting the fermentation by sampling.

The authors thank Sara All and Kara Podkaminer (Dartmouth), and Miguel Rodriguez (ORNL) for technical assistance, and Genencor/Danisco for providing samples of SpezymeCP® and Accellerase 1000® cellulases. This work was funded in part by the National Institute of Standards and Technology (NIST) through Grant Number #60NANB1D0064 awarded to Dartmouth College, where much of the early work was performed. Additional support was obtained from the Oak Ridge National Laboratory BioEnergy Science Center, a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the US Department of Energy Office of Science.

References
